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The “wisdom of crowds” refers to the phenomenon that aggregated predictions from a large group of people
can rival or even beat the accuracy of experts. In domains with substantial stochastic elements, such as
stock picking, crowd strategies (e.g. indexing) are difficult to beat. However, in domains in which some crowd
members have demonstrably more skill than others, smart sub-crowds could possibly outperform the whole.
The central question this work addresses is whether such smart subsets of a crowd can be identified a priori
in a large-scale prediction contest that has substantial skill and luck components. We study this question
with data obtained from fantasy soccer, a game in which millions of people choose professional players from
the English Premier League to be on their fantasy soccer teams. The better the professional players do in real
life games, the more points fantasy teams earn. Fantasy soccer is ideally suited to this investigation because
it comprises millions of individual-level, within-subject predictions, past performance indicators, and the
ability to test the effectiveness of arbitrary player-selection strategies. We find that smaller, smarter crowds
can be identified in advance and that they beat the wisdom of the larger crowd. We also show that many
players would do better by simply imitating the strategy of a player who has done well in the past. Finally,
we provide a theoretical model that explains the results we see from our empirical analyses.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics

Additional Key Words and Phrases: wisdom of crowds; crowdsourcing

1. INTRODUCTION

The “wisdom of crowds” refers to the phenomenon in which aggregated predictions
from a large group of people can be more accurate than most individual judgments
and can rival or even beat the accuracy of subject matter experts [Surowiecki 2005].
The seminal work on this this topic is by Galton [1907b], who attended a regional fair
at which 800 people each guessed the weight of an ox. Galton observed that the average
guess of 1,197 lbs. was just 1 lb. away from the ox’s true weight of 1,198 Ibs. [Galton
1907a]. Later, Knight [1921] had students estimate the temperature of a classroom.
The average estimate was just 0.4 degrees off the correct answer and was closer than
80% of the individual estimates. Treynor [1987] also replicated this phenomenon in an
experiment in which when he asked his students to guess the number of jelly beans
in a jar. In one experiment, the mean guess of 871 was closer to the actual number
of 850 than all but 1 of the 56 guesses. There have been numerous replications of
this phenomenon across a variety of different academic fields and across a variety of
different problem domains [Surowiecki 2005; Lorge et al. 1958].

The literature gives some insight into the underpinnings of this phenomenon.
Each judgment can be modeled as consisting of two components: information and er-
ror [Surowiecki 2005; Simmons et al. 2011]. Intuitively, if the judgments are unbiased
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and independent, the errors (deviations from the ground truth) will largely cancel out
through averaging. However, for this to happen, there are a few requirements on the
crowd and its judgments. First, members of the crowd should have some information
on the judgment in question. Second, members of the crowd should be motivated to
give accurate judgments. These two requirements help ensure that there is at least
some information in the judgments reported by each of the crowd members. Third, in
order for errors to cancel out, the judgments should be somewhat independent. Diver-
sity of experience of judges is thought to prevent “group think” phenomena [Surowiecki
2005]. Lastly, there should be no systematic bias in the judgments of the individuals
(for example, each judge being off by a constant amount) as this can severely impact
the accuracy of the aggregated estimate [Simmons et al. 2011; Lorenz et al. 2011;
Muchnik et al. 2013].

Aggregating over a larger crowd helps ensure that for any individual’s error there
is another individual with roughly an equal and opposite error. Moreover, if a rare
piece of information is relevant to the judgment task, large crowds also increase the
probability that some member has that relevant bit of information. This might imply
that aggregating over a larger crowd would result in better aggregated judgments. On
the other hand, there might be a sub-crowd in which each member has small error.
Given a crowd of people C' we define a sub-crowd S to simply be a subset of the crowd,
S C C. Expert sub-crowds are those with an advantage at the estimation task, such as
some prior expertise or familiarity with a certain type of judgment. Aggregating over
a smaller, smarter crowd might result in smaller overall error. The central question
this paper addresses is: does one get more accurate aggregations if one maximizes
the number of judgments aggregated or if one finds a smaller crowd within the larger
crowd in which the members have smaller individual errors?

There are two primary motives for pursuing smarter sub-crowds: efficiency and ac-
curacy. If collecting judgments is costly, then alternatives that require fewer judgments
are more efficient [Herzog and Hertwig 2009]. And if smarter sub-crowds exist, it may
be possible to attain higher accuracy than is possible with conventional wisdom-of-the-
crowd aggregation techniques. Efficient, accurate crowdsourcing of judgments should
be welcomed in the fields of online polling, prediction, and forecasting.

Our domain of exploration of this question will be the actions of players in a fantasy
soccer league from which we collected millions of individual-level player histories. In
fantasy soccer, every person who plays this game (henceforth “manager”) manages a
nominal (“fantasy”) team comprising professional soccer players. Week to week perfor-
mance of the real-life players is tied to the performance of the same players on the
fantasy team. The better the players perform in real life games, the more points the
fantasy team earns. Thus choosing a real-life player to be on one’s fantasy team can
be considered a vote that that specific player will do well in the future. Fantasy soccer
is ideally suited to this investigation because it comprises millions of individual-level,
within-subject predictions, past performance indicators, and the ability to test the ef-
fectiveness of arbitrary player selection strategies. The first step in our analysis will
be to predict managers’ future performance based on their past performance, in order
to assess whether there is a skill component to the game. The second step will be to use
a variety of different methods to construct crowd strategies based on imitation heuris-
tics or sub-crowds of managers of different predicted skill levels. Our final step will be
to evaluate and compare these methods to each other and the whole crowd.

2. RELATED WORK

There is an old literature on finding wiser, small crowds in larger crowds. See Lorge
et al. [1958] for a survey. Generally these studies work in similar ways. The ex-
perimenter gets students to make estimates on things like the temperature of a



room [Knight 1921], the ranking or estimation of weights [Gordon 1924; Bruce 19361,
or the number of objects in a bottle [Klugman 1945]. Afterwards the experimenter
aggregates different size groups of these estimates and compares them to the best
estimate and the aggregate of the entire group. Mannes et al. [2013] recently and
independently revisited the same idea. They analyze two data sets of numerical es-
timates. The first consists of estimates of every day measures such as temperatures,
distances, prices, etc. The second consists of forecasts of economic indicators gathered
in the Quarterly Survey of Professional Forecasters. Generally all of these papers show
that there exists a small sub-crowd with estimates that outperform the overwhelming
majority of individuals and the entire group.

We build on and extend this literature in a number of ways. First, these authors only
consider sub-crowds of sizes roughly at most 50. Since, our data set is at least three
orders of magnitude larger than any of the above, we can consider sub-crowds ranging
from singletons into the tens of thousands. This enables us to examine the tradeoff
between more concentrated expertise and more diverse opinions across a much wider
range of sizes.

Second, since the prior work focuses on numerical estimates, it only considers aver-
aging as a method of aggregation. In our domain, a manager selecting a player counts
as a vote for that player and we aggregate by choosing players with the most votes.
Thus we consider the wisdom of the crowd’s strategies as opposed to the wisdom of the
crowd’s estimates.

A third contribution of our work regards the type of data we analyze. Most of the
prior works [Bruce 1936; Gordon 1924; Klugman 1945; Knight 1921; Lorge et al. 1958;
Mannes et al. 2013] analyze data sets carefully designed to experimentally test the
existence of small, smart crowds. The internet age has made it much easier to find data
sets that are logs of some type of human behavior. These data sets are often large but
often do not have data that is perfectly suited to the research question. For example,
in our case managers have to pick teams subject to budget constraints, constraints
on the number and cost of transfers that can be made, constraints on the positions
of the players that can be picked, and subject to the constraint that a maximum of
3 players can come from any English Premier League team. (We will describe these
constraints in more detail in the next section.) Moreover, since there is no limit on how
many managers can own a player, managers have an incentive to look for lesser owned
players to differentiate their teams. While we do believe fantasy soccer is a good venue
for answering our research question, all of these constraints make this data far from
the perfectly designed data constructed in much prior work. As a result, our results
have applicability and generalizability beyond carefully designed lab experiments.

Our final contribution is that we will look for smart sub-crowds in a predictive man-
ner. That is, we will predict a fantasy soccer manager’s skill level using past perfor-
mance variables. Then we will see how strategies based on sub-crowds of managers
with different predicted performance. We use this approach so to show that our meth-
ods will useful for predicting future events as opposed to much easier tasks of “predict-
ing the past” or “predicting the present”.

3. FANTASY SOCCER

Next we discuss the English Premier League, the rules of the Fantasy Premier League
and why these data are appropriate to study the wisdom of crowds.

The English Premier League consists of 20 professional soccer teams throughout
England and Wales. In a season, every team plays every other team once at home and
once away. Accordingly, each team plays 38 games. Roughly speaking, games are held
on the weekends and all teams play each weekend. Each of these weekends is called a
gameweek. The series of 38 gameweeks is the soccer season.



The Fantasy Premier League! is a game where anyone can sign up to manage a
fantasy soccer team. A fantasy soccer team consists of 15 players: 5 defenders, 5 mid-
fielders, 3 strikers and 2 goalies, all of which are chosen from the professional players
in the English Premier League. A fantasy team is restricted to have at most 3 players
from the same Premier League team. Figure 9 (Appendix) shows a screenshot of a cur-
rent fantasy team. At a high level, the better a player does in real life, the more points
that player earns in the fantasy game. The object of the game is to earn the largest
amount of total points by the end of the season.

In finer detail, strikers gain 4 points for every goal they score, midfielders gain 5
points for every goal they score and defenders and goalies gain 6 points for every
goal they score. An assist (pass given to a teammate who then scores) earns a player
3 points. If a defender or goalie earns a “clean sheet” or a “shutout” (their Premier
League Team prevents their opponent from scoring) and they play at least 60 minutes
they earn 4 points. Each player earns an additional 2 points for playing at least 60
minutes. The league also grants 1-3 bonus points to players who played exceptionally
well in a game. These are the most common ways for a player to earn points in the
Fantasy Premier League. We do not list all the rules here because the exact mechanics
of fantasy soccer are not relevant for our investigation. In general, managers attempt
to maximize the sum over all of their players and all of the 38 gameweeks of the total
points earned by their players.

Each gameweek, a manager chooses 11 of his/her 15 players to start. The rules say
that a manager must start 1 goalkeeper, at least 3 defenders and at least 1 forward. Ifa
starting player plays in the real life game that gameweek, his points are determined by
his performance as described above. For each starting player that does not play in the
real life game that gameweek, bench players are automatically substituted instead.
Every week, each manager chooses a captain of his team. The captain gets double
points for his performance that gameweek. Managers are free to change their captain
choice every gameweek if they would like to do so. The only restriction on the captain
choice is rather obvious: a manager has to own the player to make him the captain.
The choice of captain will be the main choice we study in this work.

Players have prices and before the season starts all managers pick teams subject
to the same budget constraint. The prices of the players rise and fall based on the
players’ popularity among the fantasy managers. In between gameweeks managers
are allowed to make transfers, that is, they can sell one player and buy another player,
again subject to the budget the fantasy manager has on hand. If a manager wants to
transfer more than one player he pays 4 points for each additional transfer.

There are no restrictions on how many managers can own a player. This is crucial for
this study and it makes the Fantasy Premier League unlike many other fantasy sports.
Since every manager could, in theory, own a certain superstar player, the Fantasy
Premier League is not a true prediction market. Thus, every gameweek a manager
chooses a player we count as a vote for that player.

3.1. Data

At the time of the writing of this paper the 2013/2014 season is roughly half over, thus
the 2012/2013 season is the most current complete season we have data for. There
were roughly 2.5 million fantasy managers during the 2012/2013 season. We have for
each of these managers how many points their team earned during each gameweek of
the 2012/2013 season and how many points they earned in total for each of the pre-
vious six seasons they might have participated in. (Premier League Fantasy began in
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the 2006/2007 season.) This required scraping 2.5 million URLs. In addition, we have
all 15 player choices and captain designations, i.e. the entire team composition, for
all 38 gameweeks of the 2012/2013 season of 100,000 managers sampled uniformly
at random yielding a total of 57 million judgments. This involved scraping another
3.8 million URLs. All of the data scraped is available publicly. We also only analyzed
anonymized team identifiers and did not connect any of our analyses with any per-
sonally identifiable information. Finally, we have the actual performance of all 706
English Premier League players allowing us to evaluate the performance of any team
we construct.

4. LUCK VS. SKILL

Before we begin to look for smart sub-crowds in the larger crowd of fantasy soccer
managers, we first address the degree to which success in fantasy soccer can be pre-
dicted, or the relative contributions of luck and skill in this domain. The luck/skill
distinction is important in this context because if success at fantasy soccer is as ran-
dom as roulette, then aggregating the player choices of those who did well in the past
should be uninformative for choosing players in the future. If, on the other hand, there
is a substantial skill component to the game, it may (but not necessarily) be possi-
ble to identify managers who are likely to do well, and exploit the wisdom of these
smaller, smarter crowds through various strategies. We say it is not necessarily the
case because it is not clear that predictably high-scoring managers’ decisions can be
aggregated intelligently due to the budget and transfer constraints managers face in
choosing their players (as described in Section 3).

The luck/skill relationship has received attention in the literature especially as it
relates to the legality of gambling [Levitt et al. 2012], and to the question of whether
financial portfolio managers actually perform better than chance [Fama and French
2010]. Levitt et al. [2012] put forth properties of a game of pure chance (p. 584), in-
cluding that “payoffs do not vary systematically with the observable characteristics of
players” and “a player’s past success (or failure) does not predict his future likelihood
of success (or failure)”. They state that when games do not have such properties, play-
ers’ skill causally affects their outcomes. In this section, we show that fantasy soccer
seems to have a detectable skill component—based on observables some managers do
score predictably higher than others. In particular, past experience (having played the
last several years in a row) and past percentile (percentile rank among managers who
have completed in the same seasons’ contests) are strong predictors of future scores.

Recall that we collected the histories for all of the roughly 2.5 million fantasy man-
agers who played in the 2012/13 season. In Figure 1(a) we plot the average of the total
number of points earned by those managers who have played in each of the previous
1,2,...,6 seasons. (The Fantasy Premier League started 6 years prior.) One year’s ex-
perience in the past three years corresponds to scoring 30 to 35 points better in the
future, with diminished returns of 5 to 10 points per year for each season of experience
beyond that. Past experience is therefore one observable that predicts future scores,
suggesting there is some skill involved in doing well in fantasy soccer.

In Figure 1(b) we plot past percentile: the percentile rank of each managers’ past
scores in relative to other managers who played in the same exact years. We bin man-
agers by deciles and plot their mean 2012/13 scores. Figure 1(b) shows that each decile
increase in the distribution of comparable managers is associated with roughly 25
more points in the 2012/13 season. However, membership in the highest decile is as-
sociated with more than 50 additional points in the future, suggesting that managers
in the highest percentiles may be using different or more sophisticated strategies than
those in the larger population. Were fantasy soccer a game of pure luck, past percentile
rank would not correlate with future scores. Furthermore, were fantasy soccer a game
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Fig. 1. Predictors of 2012/13 score. First, past experience expressed as consecutive years of play prior to
2012/13. Second, past performance, expressed as decile rank among managers who have played the same
seasons.
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Fig. 2. The interaction of past experience and past performance on 2012/13 score, with a selection of levels
shown for clarity.

of skill and luck, but with a uniform level of skill distributed through the population,
then we would not expect to see additional marginal score increases for those in the
highest decile.

Figure 2 shows the interaction of the above-mentioned past experience and past
percentile variables as they related to 2012/13 score. Here we see that as the expe-
rience levels increase the curves shift upwards indicating higher scores. Also, as the
percentile rank increases across all experience levels the curves slope up and to the
right indicating that average scores increase as well.

Taken as a whole these results indicate there is predictive power of past experience
and past percentile rank on future performance. Next we combine these features and
their interaction in a regression model shown as Model 1 in Table I. This model pre-
dicts the 2012/13 score as a function of the number of years played, mean percentile
rank over years played, and their interaction. We do not add higher order terms and
dummy variables in search of the “best” model but rather stick to simple predictors to



Table I. Models predicting future score based the number
of years played and the mean percentile rank across all
years played. Model 1 is fit to 6 years of past experience
data; it predicts outcomes in 2012/13 based on scores in
years 2006/7 through 2011/12 and includes the holdout set
of managers. For an out of sample test, Model 2 is trained
on past data only (predicting outcomes in 2011/12 based
on scores in years 2006/07 through 2010/11) and excludes
managers in the holdout set we will later use to test crowd
strategies. As reflected in the estimated coefficients, the
models are quite similar. Indeed, predicted scores on the
holdout set are highly correlated between the two models
with Spearman and Pearson correlations of .99.

Model 1 Model 2

(Intercept) 1598.90***  1652.17***
(0.61) (0.83)
Years Played —6.84*** —15.72%**
(0.27) (0.36)
Percentile 336.00%** 309.79***
(1.17) (1.59)
Years Played:Experience 32.12%** 31.48***
(0.47) (0.63)
R? 0.23 0.21
Adj. R? 0.23 0.21
Num. obs. 1309085 772355

p < 0.001, "p < 0.01, p < 0.05

make for a conservative test. That is, if we identify smart sub-crowds with a simple
model of managerial skill, then results at least as good should be possible with more
specialized techniques. Note that in the Figures 1(b) and 2 above we plot percentile
rank relative to managers who played the same seasons for visual clarity while in Ta-
ble I we simply model the mean percentile rank from past seasons played (not relative
to managers who played the same seasons) because the interaction term accounts for
the relationship between the two variables.

Table I shows that past experience, past percentile and their interaction are signif-
icant predictors of future scores. Furthermore, the R? of this model shows that 23%
of the variance in 2012/13 scores can be explained simply by the number of years a
manager has played and his or her past percentile. Were fantasy soccer a game of pure
luck, no manager attribute would predict future scores and a model based on manager
attributes would not explain any of the variance in future scores. These results hold
promise for the larger goal of boosting the wisdom of the crowd by tapping into smaller
sub-crowds, a topic we turn to next.

5. CAPTAIN CHOICES AND THEIR AGGREGATION

In this section we first describe the judgments of the managers and then how we ag-
gregate them. Recall from Section 3 that each week every manager chooses one player
on his team to be the captain. The captain earns double points for that week for that
managers team. For example, if a player earns 2 points for playing over 60 minutes
and 4 points for scoring a goal, managers who captained that player earned 12 points
for their team whereas managers who did not captain that player only earned 6 points
for their team.

We view choosing a captain as a revealed preference. That is, when a manager des-
ignates a player as a captain for a gameweek he is revealing that he thinks that player
will earn more points than the other 14 players on his team. Recall that there are
706 players in the Fantasy Premier League to choose from, but the captain choice
only reveals that a manager thinks a given player will outperform the other 14 play-



ers on that managers team. Since captains earn double points, managers do have an
incentive to own the highest performing players and make them their captain. Also,
managers who choose not to have a player on their team are expressing a weak pre-
diction that those on their team will outperform those players not on their team. We
say “weak” prediction because managers may also not own a player due to budget or
trading constraints.

If we were to design the perfect data set for our analyses we would ask every man-
ager, every week who he thinks will be the top performing player. Because we are using
a data set that we scraped from the Web, we have slightly different data: each man-
ager’s choices about who will score the most among the players on his or her roster.
Thus we are aggregating judgments of over a subset of players into a judgment over
the whole set of players.

Next we describe how we aggregate the judgments of the managers. Let S be a set
of fantasy soccer managers. The captain choices are aggregated from .S independently
for each gameweek, so let i € {1,2,...,38} be one of the gameweeks. We count how
many managers in S chose each captain during gameweek i. The most popular captain
choice among S is the choice of the subcrowd S for gameweek i. The performance of
S for gameweek i is how many points the most popular captain in S earned during
gameweek i. The performance of S for the whole season is the sum of the performance
of S over each gameweek, and this is the quantity that most of our analysis will focus
on. The performance of S is how a crowd strategy based on the captain choices of the
managers in S would perform. We distinguish the performance of S from the score
of each of the managers captains in S. Given any manager s € S the score of that
manager’s captain is how many total points his or her captain choices actually earned
in a given season (we will examine the 2012/13 season). We can aggregate the scores
of the managers by averaging them or taking the median for example. But this is
different than aggregating the captain choices of these managers which is what the
performance of S captures.

5.1. Predicting performance from estimated manager quality

To begin our analyses, we predict the quality of individual managers and relate those
to performance of the crowd-chosen captains’ performance. We conduct our analyses
from the perspective of the beginning of the 2012/13 season. Accordingly, and in the
spirit of “predicting the future” instead of “predicting the present”, we train a linear
model (Model 2 in Table I) only on data from 2011/12 and before. We also exclude a
holdout set of individuals from the model’s training data so that we are not fitting and
testing the model on the same individuals. Recall that we sampled 100,000 managers
uniformly at random from the millions who played the 2012/13 season and scraped
their week-by-week player rosters. Of these, 38,365 were playing for the first year in
2012/13 and were not used for a lack of past performance data, leaving 61,635 man-
agers, which constitute the “holdout set” we use for testing.

Applying the model to the holdout set results in 61,635 individual predictions of how
managers will score in the 2012/13 season. Because we are interested in captain per-
formance and not manager score (as explained in the previous section), we use these
predictions simply to rank order the managers from first (i.e., highest predicted “man-
ager quality”) to last. We are unable to rank managers by the performance of their
captain choices from previous years because the Fantasy Premier League does not
make this data available. Moreover, overall scores could be a better, more representa-
tive measure of overall manager quality than captain performance.

Figure 3(a) shows the relationship of estimated manager quality rank to 2012/13
captain score averaged over the whole season. Each point corresponds to the average
performance of all the managers’ captains in a bin. The model, which was only trained
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Fig. 3. In the left panel, manager quality rank relates to captain performance in the 2012/13 season. Each
point reflects the mean captain performance of all managers’ captains in its respective bin. Error bars are
+1 standard error. In the right panel, mean score achieved by imitating the captain choice of a randomly
chosen manager of a given rank or less.

on scores (not captain performance), and on pre-2012/13 data seems to reasonably
capture the idea that some managers are better at picking captains than others. Steep
drops in performance are observed near the highest-ranked managers. For instance,
performance drops about 60 points over the most skilled one-sixth of the distribution
(form the 1st to the 9,999th manager) and then drops around only 40 more points over
the remaining five-sixths of the distribution (from about the 10,000th to the 61,635th
manager).

In the next sections, we model strategies for choosing captains from simple crowd
choices, to more complex schemes, and examine their performance relative to one an-
other.

5.2. Strategy: Imitation

Perhaps the simplest crowd-based strategy a manager could undertake is an imitation
heuristic [Gigerenzer 2008], which could be operationalized as simply copying the cap-
tain choice of another manager (who is willing to share this information). A number of
bloggers publish their their fantasy teams, making the imitation heuristic an imple-
mentable strategy. In Figure 3(a), the mean performance of all individual managers’
captains in the figure was 212 points. This means that copying a manager’s captain at
random would earn 212 points on average. This mediocrity comes at the cost of vari-
ance, however: the 95% confidence interval of scores using this strategy runs from 106
to 318, making the heuristic’s performance far from a sure thing.

A natural improvement upon this strategy would be imitating a good manager. Sup-
pose it were possible to put an upper bound on a friend’s quality rank (recall that a
lower rank implies a better manager). A second simple strategy is to imitate a random
manager of a given rank or lower, based on their predicted quality. Figure 3(b) shows
the average performance that would be achieved by imitating such a random individ-
ual. At the extreme right, we see the familiar 212 performance obtained by imitating
any manager’s captain choice at random. The improvements over this naive strategy
can be considerable. Imitating a random top 10,000 manager gives 245 points in expec-
tation, and a random top 100 manager yields 277 points, but with considerable varia-
tion (standard deviations of 44 and 30 points, respectively). If one is fortunate enough
to copy a random top 10 manager, performance of over 302 points seems possible, with
a standard deviation of 20 points.
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Fig. 4. In the left panel, we show the performance of choosing a captain based on popularity among k&
random managers. In the right panel, we show the performance choosing a captain based on popularity
among the top k managers, as predicted by Model 2 in Table 1.

Imitating a skilled manager leads to increased performance, but with considerable
uncertainty in outcomes. The focal strategy of our paper is the wisdom of the crowd,
aggregating opinions of managers to make a crowd-based choice of captain. The logic
underlying this strategy is that in general, popular captains (as judged by membership
on managers’ teams) should yield more points.

5.3. Strategy: The wisdom of sub-crowds

A voting-based wisdom of the crowd strategy would entail tallying all managers’ cap-
tain choices and choosing the most popular one. If collecting additional rosters is costly,
a cheaper strategy would be simply picking k£ managers at random and choosing the
most popular captain in this random sub-crowd. In Figure 4(a), we show the results
of the random sub-crowd strategy for all values of k£ ranging from one manager to all
61,635 managers. Each point in the figure is the average of 100 runs. The crowd’s
choice of captain exhibits better and better performance as votes are added, reflecting
the classic wisdom of the crowd. There is a slight decrease in performance as sub-crowd
size increases from 100 to around 3,000. A consistent pattern of plots of this type is
that they will all converge to the same point. Figure 4(a), at the far right, shows that
carrying out a wisdom of the crowds strategy with all 61,635 managers creates a crowd
team that achieves a performance of roughly 280. To put this in perspective, recall that
imitating a random manager yielded a mean 212 points, a top 100 manager 277 points
and only managers in the top 10 had performance of 302 that exceeds the performance
of this random crowd strategy.

Can we do better? Figure 3(a) shows that some managers are predictably better
than others, and therefore it might be possible to make better manager choices based
on the top managers according to a simple model. Next, we create such sub-crowds
consisting of the top £ managers in terms of predicted quality (via Model 2 in Table I)
where we vary k from 1,2, ..., 61,635 and compute the most popular captain choice
for each value of k, breaking ties at random. At one extreme, we will have a crowd
of size one, corresponding to the top-ranked manager. At the other extreme, we will
have the crowd of all 61,635 managers. Figure 4(b) shows the result. Most striking is
the overall high performance observed for the top sub-crowds. While no other strategy
yields reliably more than 300 points, in Figure 4(b) we see that all sub-crowds of size
10,000 or less resulted in captains that scored more than 300 points. Surprisingly, 93%
of the top 10,000 ranked managers failed to choose captains who scored more than 300



points. That is, the crowd choices beat 93% of the individuals whose votes determined
the crowd choices. Smaller crowds have considerable variation in captain performance
as marginal managers are added to the sub-crowd. At the same time, larger crowds
give more stable performance as managers are added but the cost of the additional,
less-informed opinions leads to steady decreases in performance. At the extreme right,
we see the familiar value of about 280, which could also be attained by averaging the
choices of 30 or more random managers (Figure 4(a)), or by imitating the choice of one
randomly-chosen top 50 manager (Figure 3(b)).

In Section A.2 of the Appendix we explore how one could weight managers captain
choices with the aim of getting even better crowd performance. We test two different,
standard weighting schemes and show that the gain in performance is slight.

Two points stand out from our empirical analyses. First, small crowds make nois-
ier predictions. This stands to reason because small crowds are swayed by individ-
ual votes. The second is one of the key conclusions of this work: smaller, more expert
crowds perform better than larger crowds. In the next section we consider the effects
of differential expertise on the performance of crowd opinion.

6. THEORETICAL MODELING

Some managers have better, more accurate, more up-to-date, more comprehensive in-
formation than others. We investigate the effects of differential information quality
in two simple, highly stylized models. The first model considers a captain choice, and
two potential candidate players. The second model is a better match to guessing the
weight of ox—the standard wisdom of crowds setting—than to fantasy soccer, but with
two managers.

Suppose there are two players, A and B. A manager chooses one of them, and wins if
that player is the better player. Any given manager m will have a probability of being
right, p,,, and we order the managers from highest to lowest. Note that such an or-
dering could be constructed using historical performance, as we found empirically. We
assume that the managers choices’ are independently distributed, and the probability
of being right is independent of the identity of the better player. Consider the model
with

1
pm =75+ 0.3 x 0.98™~ 1L, (1)

In this case, the best manager (m = 1) is right 80% of the time, and all managers are
better than 50%, though most are just barely better. Here manager 60 is right 59% of
the time, and manager 100 picks the better captain with probability 54.5%. We pick
a consensus captain for the top £ managers by picking player A when a majority of
the top k£ managers picked player A, by picking randomly when there is a tie among
the top &k managers (only possible when & is even), and otherwise picking B. How well
does the consensus captain do? Figure 5(a) shows the probability that the consensus
captain gets the right answer as a function of £. It is computed by repeatedly letting
managers choose independently and get the right choice with the probability specified
in (1). There are several points worth noting in this figure. First, the performance of the
consensus captain is maximized at 61 managers; add more and the performance drops
off. Thus, even though additional managers have information, they do not have good
enough information to be worthwhile. A smaller, smarter crowd has greater wisdom
than any individual manager, but also greater wisdom than a big crowd. Second, the
performance of consensus captains with an even number of managers is worse than
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Fig. 5. Probability that Crowd is Correct, as a function of Crowd Size. Figure 5(a) shows the probability
(y-axis) for k (x-axis) ranging from 1 to 100, while 5(b) shows the probability (y-axis) as k (x-axis) ranges up
to 10,000.

the complementary consensus captains. This is a consequence of ties, which are only
possible with an even number of managers.?

The finding of an interior maximum in crowd size represents a challenge to the con-
ventional wisdom of crowds analysis. While the crowd dominates any single manager,
with differences in estimation ability, a big crowd is not very good either. Instead, the
optimum involves a relatively modest crowd, at least in this example. Increasing the
number of managers can have a substantially deleterious effect on performance. Fig-
ure 5(b) shows the extension of Figure 5(a) beyond 100 managers; performance falls
off quite dramatically, eventually being worse than the best manager at 80%.

This model is related to a literature on voting; see e.g. [McMurray 2013]. The major
difference with that paper is that the present model contains an ordering of exper-
tise, while individual voters in McMurray [2013] estimate their position based on the
quality of information.

As the odd-even performance shows, the binomial case is poorly behaved. To gain
more insight, consider grouping sets of managers, e.g. the first fifty, the second fifty,
and so on. Then it becomes reasonable to treat each group of managers as a random
draw from a normal distribution, specifically that each group ¢ contributes the best
player X; times, with X; a drawn from N (ji;, 0?). The value ji; should exceed ¥2 of the
group size. This approximation is justified for large groups, but we will set the group
size equal to one. Such a approximation continues to be valid provided the total number
of managers is large enough to be reasonably approximated by normal distributions,
since only the union of the groups is considered. Approximating with normal distribu-
tions also captures the “guess the weight of the ox” model, which provides an alternate
justification for considering it. Moreover, the theorem applies to that situation as well.
Given that the first £k manager groups are included in our consensus, the correct cap-
tain is chosen by the consensus whenever more than half the groups choose the correct

player. If the number of managers choosing correctly is X~N (Zle fiis iy U?), then

2Without the declining probabilities of success embodied in Equation 1, the differential effects of even and
odd persist. In particular, suppose every manager has a probability p > 1/2 of being right. Then if n is an
odd number of managers, the likelihood that a majority favor the correct answer is the same as with n + 1.



the correct player is chosen with probability

k ~ k ~
X — Zi=1 i > k/2 - Zi=1 i

P(X>ky) = P 2)
[k [k
> i1 0} >ie1 07
koo(n 1 koo
k k
Y107 i1 0}
where y; = ji; — 1. Thus, the best consensus captain arises from the top & managers
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where k£ maximizes . This analysis shows that the optimal consensus captain

VR o2
maximizes the coefficient of variation of the estimate. It is not the case that adding
additional managers is necessarily good; adding managers improves consensus teams
only when the incremental manager has sufficient accuracy to outweigh the noise they
add.

The next theorem provides conditions characterizing when adding managers im-
proves the consensus. It uses the notation

| =

k
1
[l = EZ/% and 77 =
i=1

k
Z o? 4)
i=1

THEOREM 6.1. An additional manager k+ 1 improves the consensus performance if

and only if
M1 Tht1 Lo
RV R e e (5)
2 2
ik o k—oo 2 O

Theorem 6.1 provides several insights. First, it provides an exact formula for when
adding an additional manager will improve consensus. This formula shows that there
is a tradeoff between signal and noise: a higher mean is needed to justify a higher
variance, because the right hand side of the inequality is increasing in the variance.
This tradeoff demonstrates that the wisdom of a large crowd may be dominated by the
wisdom of a smaller, more expert crowd.

Second, when the variances are the same, the ordering of managers is unambiguous:
higher mean entails higher accuracy. Theorem 6.1 shows that an additional manager is
helpful to the consensus when the manager is at least as good as V&2 + k — k times the
average performance of the existing managers in the consensus. Moreover, vk2 + k —k
is in this instance approximately Y2. Colloquially, it is worth adding a manager to
the consensus view provided that manager is not “half bad,” relative to the average
performance of managers in the consensus.

2

1%41
)

2 o0}

Third, for large k, it is worth adding a manager when % > which may be

rearranged to require

1
Phit > ZB% (6)
Oiy1 20}

The inequality (6) provides an ordering on the managers, for large k: order by mean

over variance. While this ordering is not exact, it holds for large values of k. (It is shown
in the proof that the rate of convergence is 1/x.) This approximation also reinforces the
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Fig. 6. The optimal k (y-axis) as a function of the depreciation rate b (x-axis). The figure shows the variance-
minimizing size of the crowd, as a function of the rate b at which successive managers’ predictions worsen,
for b < 1.

“add a manager who is not half bad” conclusion of common variances, because the
critical value is half the average mean over the average variance.

The best consensus may arise from less than the wisdom of the full crowd, as in the
example at the beginning of the section. It is not optimal to add managers who are
significantly worse than half the average performance of the consensus. Recall that u;
is the probability of being correct minus ¥2. Thus, for example, if the average accuracy
of the group is 70%, adding a manager with accuracy 60% improves the consensus,
while adding a manager with accuracy 59% will not when k > 3.

To complete this analysis, we return to the first example, where p,, = 1/2 + a x b™.
In this case, y; = p; — /2 = ab’. When the variance be approximately constant, the
optimal number of managers in the consensus is determined by maximizing

Zle,uq; _ab 1-0bF
Vk 1-b V&
Figure 6 shows the accuracy-maximizing value of k as a function of the deterioration
rate b of the managers. The maximum has an approximation

_ 0.284668
~ log(b)

which is exact except that the numerator is approximated. Note that for b = .98, we
obtain the solution of £ = 62, which is similar to the value 61 that we found by direct
computation.

6.1. Modeling Information

How much weight does a manager with access to better estimates put on well-known
information?

As shown above, managers can add more variance to the consensus than their in-
formation justifies, decreasing the performance of the consensus captain choice. The
consensus captain might want to ignore the choices of worse-performing managers for
a completely different reason: if the information of the worse managers has already
been incorporated into the better manager’s estimates.

We switch the context of the model to estimating a quantity observed with error, such
as the weight of an ox or the number of jelly beans in a jar. This alternate model makes
more sense with small numbers of managers, and is widely applicable in wisdom of
crowds settings.

We consider two managers. Manager 1 has one signal. Manager 2 has access to two
signals: an idiosyncratic signal, and a noisy version of manager 1’s signal. Manager 2



will incorporate information about manager 1’s signal in his estimate, perhaps enough
that manager 2’s estimate is a sufficient statistic for both managers’ estimates. That
the incorporation of manager 1’s information into manager 2’s estimate provides a
distinct explanation of why a manager may not be helpful for a consensus captain
choice will follow from the fact that the optimal weight to place on manager 1’s signal
may be negative, because manager 2 places too much weight on manager 1’s signal.
Suppose the true value being estimated—the actual weight of the ox—is 1. We let
have a diffuse prior, so that the Bayes update given any signal will just be the signal.
Let manager 1 observe u + ¢ and manager 2 observes both a signal u + u as well
as a noisy copy of manager 1’s signal, u + ¢ + v. We restrict manager 2 to a convex
combination of the two signals, that is, S(u + u) + (1 — 8)(¢ + € + v). The random
variables u, v and ¢ are all assumed to have mean zero, be independently distributed,
and we denote the variance of any variable = by 02, the CDF by F, and the PDF by f..

THEOREM 6.2. The probability that manager 1 wins is

[T (= (5) o (5=5) oo [0 (10 (575) + 2. (5)) o

If the distributions are normal, this expression is

_1 reCo poe reCo 2 floe
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To illustrate the theorem, we consider the case 02 = 02 = 1. This means that the pre-
diction errors made by manager 2 are the same on both his observation of manager 1’s
signal, and his own signal. Such a situation might arise if the source of the errors were
transcription errors. How much weight would minimize the variance of the manager’s
estimates? This variance is 3202 + (1 — 8)?(c2 + 02) = %2 + (1 — B)%(1 + ¢2), which

;1;2 This formula provides a benchmark, because it is the level

a manager would choose to maximize accuracy. Note that if manager 2 chooses that
level, much of the desired weight on manager 1’s signal is already incorporated into
manager 2’s estimate.

How much does a manager actually choose when the manager maximizes the prob-
ability of winning? In Figure 6.1, we plot the value of 5 that maximizes manager 2’s
probability of winning as a function of o, and compare it to the weight that minimizes
variance of manager 2’s estimate. Interestingly, taking into account the competitive
nature of the manager’s problem can either increase or decrease the amount of weight
placed on manager 1’s signal relative to the variance-minimizing weight, although it
only decreases it when manager 2’s signal is more precise than manager 1’s signal.

When manager 1 is very accurate (02 is small), manager 2 puts less weight on his es-
timate of manager 1’s signal and more on his private knowledge than would maximize
manager 2’s accuracy. This is because manager 1 has the advantage over manager 2 (a
better estimate than is available to manager 1) and manager 2 essentially bets on his
private signal. In contrast, when manager 2 has a better estimate available (specifi-
cally, when 1 = 02 < ¢2), manager 2 puts less weight on his own signal than would
minimize squared error.

For the more plausible case of large values of 02, manager 2’s estimates put too
much weight on old information. Thus, to maximize overall accuracy, manager 1’s sig-
nal should probably enter negatively in a crowd-wisdom average, in order to undercut
the overweighting of this information in manager 2’s signal. Indeed, the most weight

is minimized at 5 =
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Fig.7. The weight placed on own information. The upper curve shows the weight which minimizes variance,
while the mostly lower curve shows the amount that maximizes the probability of winning. This shows that
for most values, the manager underweights his own information and overweights the noisy signal of the
rival’s information.

placed on the manager’s own signal, even as the variance of manager 1’s signal di-
verges, is 69.4% (the actual value is a weird number involving +/114).

The interesting finding in this section is that if better managers have access to the
information available to lesser managers, the better managers will not only incorpo-
rate that information, but will put too much weight on the information available to
lesser managers. Thus, when using the predictions of the better managers, the infor-
mation of the lesser managers has already been incorporated, and then some. Conse-
quently, if the predictions of the lesser managers were to be incorporated, these pre-
dictions would enter negatively, to undo some of the better managers’ overweighting of
the information. The desire to win requires the better managers to blunt the value of
information available to lesser managers, resulting in the overweighting of this infor-
mation. Wise crowd members negate the value of less wise crowd members.

We have seen that large crowds make worse predictions than smaller, more expert
crowds for two quite distinct reasons. First, differences in prediction ability mean that
adding poor predictors could lower overall predictive performance. In particular we
showed a trade off between the content of additional predictions and the noise that is
added. Approximately speaking it is worth adding an extra manager when that man-
ager is at least half as good as the group average. The second reason for eliminating
weaker managers is that their information may already be incorporated in the predic-
tions of the stronger managers.

7. CONCLUSION AND FUTURE WORK

In this paper, we have empirically assessed three main methods for extracting wisdom
from the crowd: Imitating a random manager of a given rank or less, aggregating
the choices of randomly-chosen managers, and aggregating the choices of top-ranking
managers. To evaluate these strategies relative to one another, Figure 8 summarizes
these strategies’ performance at selected crowd sizes.

The relative success of imitation to aggregating random opinions depends on the
number of experts available and what is known about their skill. It turned out to be
better to imitate a manager known to be in the top 30 than to aggregate the choices
of 30 random people, but the average top 100 manager does worse than aggregating
100 opinions of randomly chosen people. One point our analysis and 8 makes clear is
that tapping the wisdom of small, smart crowds can beat both imitation and random
crowd strategies by a large margin. In games with at least some element of skill it
makes sense that one may be able to predict who may have more skill based on past
behavior. The main conclusion of this work is that one can find smarter, smaller crowds
within a larger crowd by aggregating only those with higher predicted skill levels.
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Fig. 8. Comparison of three main strategies at selected points from Figures 3(b), 4(a) and 4(b).

When expertise is not evenly spread throughout the crowd, it is better to focus on the
concentration of the expertise as opposed to diluting it with experts of a lower quality.
As a result, the wisdom of the experts in the crowd can beat the wisdom of the whole
crowd.

We showed theoretically that that there is a trade-off between adding an informa-
tive manager to a crowd and the variance that manager brings. When the predictions
are normally distributed, the criterion for improving the crowd wisdom takes a partic-
ularly simple form. The rule is approximately to add a manager when that manager
is at least half as good as the crowd average, that is, they are not half bad. In ad-
dition we show the managers with access to better information may over-weight the
information of rivals. In particular the information held by lesser managers is already
incorporated into the estimates created by better managers. This incorporation arises
through competitive effects, as managers try to mitigate the influence of information
held by others. Consequently it may be optimal to ignore, or even negatively weight
the information held by less expert managers.

Moreover, aggregating many of those predicted to be experts resulted in better pre-
dictions than simply imitating the best predicted experts. (Compare the leftmost point
in Figure 3(a) to the leftmost points in Figure 4(b)). These overall effects are robust to
different weighting schemes. Furthermore, we showed that crowd strategies are effec-
tive in settings beyond the tradition one of averaging numerical estimates.

The wisdom of crowds phenomenon underlies many prediction mechanisms such
as prediction markets, risk assessments, and economic forecasts. Our method shows
that improved predictions may be obtained by giving high weights to the opinions of
those who have demonstrated skill in the past. Because data sets with individual-level
records of human performance are becoming increasingly available, the future may
hold more occasions on which to improve upon crowd predictions by identifying and
tapping into the wisdom of smart sub-crowds.

Prediction markets are an interesting case of crowd wisdom. Since they have an en-
dogenous weights, experts bet more. However, the size of the bets is also determined by
wealth, risk tolerance, enjoyment of the game, as well as information. Our results sug-
gest that it may be desirable to limit participation in prediction markets to those with
proven expertise. Moreover, it would be very interesting to study, both theoretically



and empirically, whether participants in prediction markets overweight information
held by others.

There are a number of directions one could take this research in the future. For
example, one could analyze more complex weighting schemes or apply more sophisti-
cated models to better identify highly skilled managers. One could also try to make
new teams based on popular players, or analyze the performance of the most common
entire teams. Finally, one could also investigate if the smart-crowd techniques exam-
ined here can boost the predictive abilities of polls, expert forecasts, and prediction
markets.
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A. APPENDIX
A.1. Fantasy Premier League Screenshot
Figure 9 shows a screenshot of a recent Fantasy Premier League Team.

A.2. Strategy: Weighting the wisdom of sub-crowds

Recall that we constructed sub-crowd teams by choosing the most popular captains
among the sub-crowd. This method weighs each manager’s selection equally. Next, we
explore weighing managers votes by their predicted quality. First we do this by normal-
izing each manager’s predicted score (from Model 2 in Table I) to the range [0, 1]. Then
instead of adding 1 each time a manager chooses a captain, as before, we add their nor-
malized predicted score. We call this linear weighting. Figure 10(a) shows the result.
Another possible weighting scheme that would give the high quality managers even
more weight would be to weight the manager selections exponentially in terms of their
normalized predicted quality scores. Figure 10(b) shows the results of this weighting
scheme. Since the overall shape of Figures 10(a), 10(b), and 4(b) are similar, we can
conclude these weighting schemes do not dramatically increase the performance of the
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Fig. 9. A screenshot of an actual fantasy soccer team.
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Fig. 10. Performance of sub-crowds consisting of the top k¥ managers weighting captain choices by the
managers predicted quality normalized to the range [0, 1] and by weighting captain choices exponentially.

sub-crowds. One reason for lack of overall increase in performance may be what is
known as the “flat maximum effect” [Lovie and Lovie 1986]. Another conclusion that
can be drawn from this similarity is that the wisdom of the sub-crowds is robust to
different weighting schemes and to leaving the managers’ selections unweighted.

A.3. Notes and Derivations for Theory Section

Justification for Footnote 2:

Start with an odd number of managers n. If more than "T“ are correct, then a majority
continues to hold when an extra manager is added. Similarly, if fewer than ”7*1 are
correct, then even adding a correct managter produces a majority that are incorrect.
If there are "7“ correct, then when an extra manager is added, that manager must
be correct for the vote to remain correct for sure; otherwise we have a tie. Similarly,
when 2= are correct (a majority are not with n managers), adding a correct manager

2
produces a tie. Thus, the net effect of adding a manager, going from n to n+1, is

( (n i 1) > p(n+1)(1 _p)(nfl) p+1-p) -1+ ( (n ﬁ 0 > p(nfl)(l _ p)(n+1) (p)

(@ )P D (= )+ (=) () =0

Computation of Figure 5:

For each number of i managers, this program lets each manager be right with proba-
bility p[m], then finds whether a majority is right, in which case tally[i] is incremented
(by in the event of a tie). It does this 1M times.
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m=100; b = 0.9§; trials = 1000000; Do[score[i] = 0; tally[i] =0, {1, 1, m}]
P 1=0.5+{{b"{1i-1))+0.3);
Do[Do[=score[i] =0, {i, 1, m}]:
Do[If[Random[] = p[i], score[1i] = =core[i] +1], {i, 1, m}]:
If[score[1] == 1, tally[1] = tally[1] +1]:
Do[=core[i] = score[i] + score[1i - 1]; If[score[i] =1 /F 2, tally[i] = tally[i] +1];
If[score[i] ==1/2, tally[i] = tally[i] +1/2], {i, 2, m}]
4t 1, trials}]
ListPlot[Table[{i, tally[i] ftrials}, {i, 1, m}]1]

Proof of Theorem 6.1:
Note that, using (5) and the quadratic formula:
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Ik 2 k o k o o,

This completes the left inequality of (6). To establish the limit, we show that, for & > g,

2
gzvk2+k,4 kz>é—A—

2 8k
To see this, note that

2
éZN/k’z-‘rkA k>é—A—

2 8k
(1) +E>VEZ+EKA> A+k
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2 2 2 4
(D) R+ AK+ 4 >k +kA> K+ AK + 4 —2 (4 +k) & + gz

) & + i =~ (F— %)

2
M) L 202-2(3

Which is transparently true for k& > %
Computation of the optimal k for the geometric case, and Figure 6
This program takes the derivative and sets it equal to zero.

ff[bb . x ]1=D[{1-(bb"x)) /Sqrt[x], x]:

kstar[bb ] :=x/. FindRoot[ff[bb, x] == 0, {x, 5}]1[[1]]
Plot[kstar[bh], {bb, .8, .991]

kstar[h]

Approximation of the solution for k*:

(9 _ k ]_ 73/ k — 1k
= — — = —_ 2(1 — _
0= 2ok (1—b") = — 2k 72(1 = b) — k™" log(h)

3 1.3
= f%k* 2 (1 - b" — 2kb* log (b)) = —5k” 2 (1— (0% + 21og(0%)))

Which provides the solution b* =20.284668. It is straightforward to check that this
solution represents the global maximum.

A.4. Notes and derivations for the Modeling Information Section

Proof of Theorem 6.2:
It is useful to introduce the notation z = fu + (1 — §)v.

The density of zis [~ f, (% —(1- B)y) fo(By)dy. If u, v are N(0,02), N(0,02), respec-

tively, then z is distributed N (0, 3202 + (1 — 8)%02).
Manager 2 wins when his signal is more accurate than manager 1’s, that is, with

probability
P((Bp+u)+ (1 =B)(p+etv)—p)® < (n+e—pn?)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



The Wisdom of Smaller, Smarter Crowds App-5

= P((Bu+ (1—B)(e+v))* < &%)
= P((z+ (1= P)e)* < &%) = P((z° + 2(1 — Bze + (1 — B)*e* < &7)

— P(0 < B(2 - B)? —2(1 — Blez — 22)

Because 3(2—3)e2—2(1—3)ez—2? is negative at ¢=0, 0 < 5(2—3)e?—2(1—3)ez—2? always
gives two disjoint sets of € that satisfy the inequality. Using the quadratic formula, the
solutions are

1 1
m(2(1*5)Zi\/4(1*5)222+45(2*5)Z2):m(( B)z =+ |z]\/(1-B)2 + B2 - 5))
1
R (( )zizf) 7(2_5)(1—511)
When z>0, this expression yields the values ;_zﬁ,, % and similarly when z<0, £ 5.3 *_73.
Thus,

P((Bp+u)+ (L=B)(p+e+v)—p)? < (nt+e—p)?)

= P(0 < B2~ B)e* — 2(1 - Blez — 27)
—Z z —Zz z
P(zz()&(e< 53 €>6>>+<z<0&<€> 55 €<ﬁ)>

- f e (o (5) e (55)) e [ oo (1 (575) + 5. (5)) o

Calculation of the Closed Form in Theorem 6.2:

phise ,=su ,srv b ]-=
Integrate[PDF [HormalDistribution[0, Sgri[(B*2) » (3u"2) + ({1 - "2) v (3" 2)]1]1, 2]«
(1+ CDOF [HormalDistribution[0, se], -2/b] - AF [HomalDistribution[0, sel, 27(2-b)1), {2, 0, Infinity},
fesumptions wse = 0Lk svr -0 &8 su-0&8h - 088D < 1] +
Integrate [PDF [HormalDistribution[0, Sqrt[(b"2) » (su"2) + ({1-b)"2) v (5¥"2)]1], 2] *»
(1+ CDF [HormalDistribution[0, se], z/7(2 -b)] - CDF [HormalDistribution[0, se], -2 /h]),
{z, -Infinity, 0}, Aesumptions - =2 -~ 0&Csr - 0&S=su 088 h- 0&%% Db = 1]
ArcCot[x] + ArcCot [ -x1

x+ArcCDtl$] —Arcl:ot[ L l
-‘I 3 51;+(—l+b)i sl ‘\|| i s\.li+(—.:|..-|-;|:vj2 ol
s

This mathematica calculation performs the integrations from the text in the special
case of normal distributions, obtains the closed form, and then performs a minor ad-
justment by noting that ArcCot[-x]= — ArcCot[x].
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Plot of figure 7 and calculation of the limiting value for this plot
Off[FindMaxdmum: :1stol]:
betar[s ]:=b /. FindMadmm[pb[=, 1, 1, b], {b, .5}1[[2]]
Plot[{hstar[s], {1+5"2)/{2+5"2)}, {5, .1, 10}, AesOrigin — {0, .5}, PlotLabel — "Figure 2"]

Fiqure §

The logic of calculating the limiting value is to first take the derivative, then to take
the numerator of the derivative, then take the limit as o.— o0, then set it equal to zero
and find the three solutions, only one of which is real, and then finally to evaluate that
solution numerically.

Simplify[D[pbise, 1, 1, b1, b1]

Limit[{1+2se’-4b [1+se’) + 31" (2+se”)-2b° (2+se” )] sse"2, se ~Infinity]

Solve[2-4b+3b°-2h7 -0, b

1:5

H[l+[9+2‘\-'114] . 5 ]
2 235 2(3(9+2 IO ))"

Zae(l+2se’-4b (l+aze? +3b% 2+eely-2b® 2+ 2fy

Wi-l+bit+bim(l-2Zh+ht (Z+3eiy1) (1+45el+bi (Z+3el) - 2b (1+ 2 3:i))
Z-4h+3b" -z

1 (sezyTI)Y 5

0 Lk 1 (1+1+3) (9+24T1)" 5(1-1+F) \
2 23t 2 (3 (8+2yTd) ) 2 4387 a(3(a.zy1ma))e "
1 [1-2+3) (9+zv11a) 5(1+1v3)

{h_)E_ 4303 * i

4(3(o+z118))"

0.694146
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